Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.

نویسندگان

  • Stephen Whitelam
  • Phillip L Geissler
چکیده

We introduce a "virtual-move" Monte Carlo algorithm for systems of pairwise-interacting particles. This algorithm facilitates the simulation of particles possessing attractions of short range and arbitrary strength and geometry, an important realization being self-assembling particles endowed with strong, short-ranged, and angularly specific ("patchy") attractions. Standard Monte Carlo techniques employ sequential updates of particles and can suffer from low acceptance rates when attractions are strong. In this event, collective motion can be strongly suppressed. Our algorithm avoids this problem by proposing simultaneous moves of collections (clusters) of particles according to gradients of interaction energies. One particle first executes a "virtual" trial move. We determine which of its neighbors move in a similar fashion by calculating individual bond energies before and after the proposed move. We iterate this procedure and update simultaneously the positions of all affected particles. Particles move according to an approximation of realistic dynamics without requiring the explicit computation of forces and without the step size restrictions required when integrating equations of motion. We employ a size- and shape-dependent damping of cluster movements, motivated by collective hydrodynamic effects neglected in simple implementations of Brownian dynamics. We discuss the virtual-move algorithm in the context of other Monte Carlo cluster-move schemes and demonstrate its utility by applying it to a model of biological self-assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective translational and rotational Monte Carlo cluster move for general pairwise interaction.

Virtual move Monte Carlo is a cluster algorithm which was originally developed for strongly attractive colloidal, molecular, or atomistic systems in order to both approximate the collective dynamics and avoid sampling of unphysical kinetic traps. In this paper, we present the algorithm in the form, which selects the moving cluster through a wider class of virtual states and which is applicable ...

متن کامل

Lattice kinetic Monte Carlo simulations of convective-diffusive systems.

Diverse phenomena in physical, chemical, and biological systems exhibit significant stochasticity and therefore require appropriate simulations that incorporate noise explicitly into the dynamics. We present a lattice kinetic Monte Carlo approach to simulate the trajectories of tracer particles within a system in which both diffusive and convective transports are operational. While diffusive tr...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Secondary Particles Produced by Hadron Therapy

Introduction Use of hadron therapy as an advanced radiotherapy technique is increasing. In this method, secondary particles are produced through primary beam interactions with the beam-transport system and the patient’s body. In this study, Monte Carlo simulations were employed to determine the dose of produced secondary particles, particularly neutrons during treatment. Materials and Methods I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 15  شماره 

صفحات  -

تاریخ انتشار 2007